8 research outputs found

    Proprioceptive contribution to oculomotor control in humans

    Get PDF
    This work was supported by an award from the Wellcome Trust Institutional Strategic Support Fund at the University of St Andrews, grant code 204821/Z/16/Z (DB).Stretch receptors in the extraocular muscles (EOMs) inform the central nervous system about the rotation of one's own eyes in the orbits. Whereas fine control of the skeletal muscles hinges critically on proprioceptive feedback, the role of proprioception in oculomotor control remains unclear. Human behavioural studies provide evidence for EOM proprioception in oculomotor control, however, behavioural and electrophysiological studies in the macaque do not. Unlike macaques, humans possess numerous muscle spindles in their EOMs. To find out whether the human oculomotor nuclei respond to proprioceptive feedback we used functional magnetic resonance imaging (fMRI). With their eyes closed, participants placed their right index finger on the eyelid at the outer corner of the right eye. When prompted by a sound, they pushed the eyeball gently and briefly towards the nose. Control conditions separated out motor and tactile task components. The stretch of the right lateral rectus muscle was associated with activation of the left oculomotor nucleus and subthreshold activation of the left abducens nucleus. Because these nuclei control the horizontal movements of the left eye, we hypothesized that proprioceptive stimulation of the right EOM triggered left eye movement. To test this, we followed up with an eye-tracking experiment in complete darkness using the same behavioural task as in the fMRI study. The left eye moved actively in the direction of the passive displacement of the right eye, albeit with a smaller amplitude. Eye tracking corroborated neuroimaging findings to suggest a proprioceptive contribution to ocular alignment.Publisher PDFPeer reviewe

    Body-Mounted Robotic System for MRI-Guided Shoulder Arthrography: Cadaver and Clinical Workflow Studies

    Get PDF
    This paper presents an intraoperative MRI-guided, patient-mounted robotic system for shoulder arthrography procedures in pediatric patients. The robot is designed to be compact and lightweight and is constructed with nonmagnetic materials for MRI safety. Our goal is to transform the current two-step arthrography procedure (CT/x-ray-guided needle insertion followed by diagnostic MRI) into a streamlined single-step ionizing radiation-free procedure under MRI guidance. The MR-conditional robot was evaluated in a Thiel embalmed cadaver study and healthy volunteer studies. The robot was attached to the shoulder using straps and ten locations in the shoulder joint space were selected as targets. For the first target, contrast agent (saline) was injected to complete the clinical workflow. After each targeting attempt, a confirmation scan was acquired to analyze the needle placement accuracy. During the volunteer studies, a more comfortable and ergonomic shoulder brace was used, and the complete clinical workflow was followed to measure the total procedure time. In the cadaver study, the needle was successfully placed in the shoulder joint space in all the targeting attempts with translational and rotational accuracy of 2.07 ± 1.22mm and 1.46 ± 1.06 degrees, respectively. The total time for the entire procedure was 94 min and the average time for each targeting attempt was 20 min in the cadaver study, while the average time for the entire workflow for the volunteer studies was 36 min. No image quality degradation due to the presence of the robot was detected. This Thiel-embalmed cadaver study along with the clinical workflow studies on human volunteers demonstrated the feasibility of using an MR-conditional, patient-mounted robotic system for MRI-guided shoulder arthrography procedure. Future work will be focused on moving the technology to clinical practice

    Association between mitochondrial function measured by 31P Magnetic Resonance Spectroscopy and physical performance in older people with functional impairment

    Get PDF
    Abstract Background Mitochondrial dysfunction is a potential therapeutic target to improve skeletal muscle function, but the contribution of mitochondrial dysfunction to impaired skeletal muscle performance in older people remains unclear. The aim of this analysis was to test the association between measures of skeletal muscle mitochondrial function and physical performance in older people. Methods We analysed data from the Allopurinol in Functional Impairment trial. Participants aged 65 and over, who were unable to walk 400 m in 6 min, underwent 31P magnetic resonance spectroscopy of the calf after exercise at baseline and at 20 weeks follow up. The phosphocreatine recovery half‐life time (t1/2) was derived as a measure of mitochondrial function. Participants undertook the 6‐min walk test and the Short Physical Performance Battery. Muscle mass measured using the Akern 101 bio‐impedance analysis system. Bivariate correlations and multivariable regression analyses were conducted to determine associations between t1/2 and baseline factors. Results One hundred and seventeen participants underwent baseline 31P magnetic resonance spectroscopy, mean age 80.4 years (SD 6.0); 56 (48%) were female. Mean 6‐min walk was 291 m (SD 80), mean SPPB score was 8.4 (SD 1.9); t1/2 correlated significantly with Short Physical Performance Battery score (r = 0.22, P = 0.02) but not with 6‐min walk distance (r = 0.10, P = 0.29). In multivariable linear regression, muscle mass and total body weight, but not t1/2, were independently associated with Short Physical Performance Battery score and with 6‐min walk distance. Change in t1/2 was not significantly associated with change in Short Physical Performance Battery score (r = 0.03, P = 0.79) or with change in 6‐min walk distance (r = −0.11, P = 0.28). Conclusions Muscle mass, but not phosphocreatine recovery time, was consistently associated with Short Physical Performance Battery score and 6‐min walk distance in older people with functional impairment

    Cohort profile for the STratifying Resilience and Depression Longitudinally (STRADL) study:A depression-focused investigation of Generation Scotland, using detailed clinical, cognitive, and neuroimaging assessments

    Get PDF
    Grant information: STRADL is supported by the Wellcome Trust through a Strategic Award (104036/Z/14/Z). GS:SFHS received core support from the CSO of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). ADM is supported by Innovate UK, the European Commission, the Scottish Funding Council via the Scottish Imaging Network SINAPSE, and the CSO. HCW is supported by a JMAS SIM Fellowship from the Royal College of Physicians of Edinburgh, by an ESAT College Fellowship from the University of Edinburgh, and has received previous funding from the Sackler Trust. LR has previously received financial support from Pfizer (formerly Wyeth) in relation to imaging studies of people with schizophrenia and bipolar disorder. JDH is supported by the MRC. DJM is an NRS Clinician, funded by the CSO. RMR is supported by the British Heart Foundation. ISP-V and MRM are supported by the NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health; and MRM is also supported by the MRC MC_UU_12013/6). JMW is supported by MRC UK Dementia Research Institute and MRC Centre and project grants, EPSRC, Fondation Leducq, Stroke Association, British Heart Foundation, Alzheimer Society, and the European Union H2020 PHC-03-15 SVDs@Target grant agreement (666881). DJP is supported by Wellcome Trust Longitudinal Population Study funding (216767/Z/19/Z) the Eva Lester bequest to the University of Edinburgh. AMM is additionally supported by the MRC (MC_PC_17209, MC_PC_MR/R01910X/1, MR/S035818/1), The Wellcome Trust (216767/Z/19/Z ), The Sackler Trust, and has previously received research funding from Pfizer, Eli Lilly, and Janssen. Both AMM and IJD are members of The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1); funding from the BBSRC and MRC is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptPeer reviewedPublisher PD

    Body-Mounted Robotic System for MRI-Guided Shoulder Arthrography: Cadaver and Clinical Workflow Studies

    No full text
    This paper presents an intraoperative MRI-guided, patient-mounted robotic system for shoulder arthrography procedures in pediatric patients. The robot is designed to be compact and lightweight and is constructed with nonmagnetic materials for MRI safety. Our goal is to transform the current two-step arthrography procedure (CT/x-ray-guided needle insertion followed by diagnostic MRI) into a streamlined single-step ionizing radiation-free procedure under MRI guidance. The MR-conditional robot was evaluated in a Thiel embalmed cadaver study and healthy volunteer studies. The robot was attached to the shoulder using straps and ten locations in the shoulder joint space were selected as targets. For the first target, contrast agent (saline) was injected to complete the clinical workflow. After each targeting attempt, a confirmation scan was acquired to analyze the needle placement accuracy. During the volunteer studies, a more comfortable and ergonomic shoulder brace was used, and the complete clinical workflow was followed to measure the total procedure time. In the cadaver study, the needle was successfully placed in the shoulder joint space in all the targeting attempts with translational and rotational accuracy of 2.07 ± 1.22mm and 1.46 ± 1.06 degrees, respectively. The total time for the entire procedure was 94 min and the average time for each targeting attempt was 20 min in the cadaver study, while the average time for the entire workflow for the volunteer studies was 36 min. No image quality degradation due to the presence of the robot was detected. This Thiel-embalmed cadaver study along with the clinical workflow studies on human volunteers demonstrated the feasibility of using an MR-conditional, patient-mounted robotic system for MRI-guided shoulder arthrography procedure. Future work will be focused on moving the technology to clinical practice

    Body-Mounted Robotic System for MRI-Guided Shoulder Arthrography: Cadaver and Clinical Workflow Studies

    No full text
    This paper presents an intraoperative MRI-guided, patient-mounted robotic system for shoulder arthrography procedures in pediatric patients. The robot is designed to be compact and lightweight and is constructed with nonmagnetic materials for MRI safety. Our goal is to transform the current two-step arthrography procedure (CT/x-ray-guided needle insertion followed by diagnostic MRI) into a streamlined single-step ionizing radiation-free procedure under MRI guidance. The MR-conditional robot was evaluated in a Thiel embalmed cadaver study and healthy volunteer studies. The robot was attached to the shoulder using straps and ten locations in the shoulder joint space were selected as targets. For the first target, contrast agent (saline) was injected to complete the clinical workflow. After each targeting attempt, a confirmation scan was acquired to analyze the needle placement accuracy. During the volunteer studies, a more comfortable and ergonomic shoulder brace was used, and the complete clinical workflow was followed to measure the total procedure time. In the cadaver study, the needle was successfully placed in the shoulder joint space in all the targeting attempts with translational and rotational accuracy of 2.07 ± 1.22mm and 1.46 ± 1.06 degrees, respectively. The total time for the entire procedure was 94 min and the average time for each targeting attempt was 20 min in the cadaver study, while the average time for the entire workflow for the volunteer studies was 36 min. No image quality degradation due to the presence of the robot was detected. This Thiel-embalmed cadaver study along with the clinical workflow studies on human volunteers demonstrated the feasibility of using an MR-conditional, patient-mounted robotic system for MRI-guided shoulder arthrography procedure. Future work will be focused on moving the technology to clinical practice
    corecore